
https://frank.seesink.com

From CLI to "Agentic AI", the Arc 
of Networking Bends Toward 

Automation... right?
Frank Seesink

Good morning.  I admit the title is a little click-bait-y in nature, but I will explain this along the way.

We have 1 hour for this session, and I would like to reserve as much time as possible for questions and discussion.  So I will try to tear through this slide 
deck.

Please note these slides are available in various file formats at the QR code in the upper left, and we will provide the link as well in the chat.  So here we 
go…



https://frank.seesink.com

First, a message from 
our sponsor…



https://frank.seesink.com

What I picture in my head…

When I work on presentations, this is what I picture in my head.



https://frank.seesink.com

What it ends up looking like…

Actually that’s not quite 
right.  The guy who made this 

is clearly more talented.

Unfortunately, THIS is what things typically end up looking like.

Just managing expectations.



https://frank.seesink.com

Disclaimer

Quick disclaimer.
All opinions here are my own and do not represent nor necessarily reflect those of my employer.  That said, should you find any of this information useful, 
I would still like to give credit to my employer as I continue to hone my skills and knowledge there.

Of course, any and all mistakes/errors/etc. are my own.  I would like to blame "AI", but I cannot. :-)



https://frank.seesink.com

Who am I?

Frank Seesink 
• Senior Network Engineer, UNC Chapel Hill 
• Part of network DevOps group 
• Involved in network automation for years 
• Love languages, both human & computer 
• Programming since I was 12 years old 
• Formally B.S. in Computer Science with all 

coursework for an M.S. in C.S. 
• JOAT - databases, OSes, networking,…

I only mention my background to give context.

Networking as a whole is made up a very diverse group of people.  Many come to networking from non-technical backgrounds.  And of those who came 
from a C.S. or engineering background, many did so specifically BECAUSE they did NOT want to program.  And the topic of this session is network 
automation, which many will associate with programming.

So I just want to say I understand.



https://frank.seesink.com

Who am I?

Frank Seesink 
• 20+ years at state REN/Internet2(I2) Connector 
• 6+ years at a large, public university/I2 Member 
• I2 NTAC Network Automation SIG chair since its 

creation in 2017 (technically) 
• Automating things most of my life

Push me, 
Dave

NTAC = Network Technical Advisory Committee

One of my mantras:  “If you want me to do something once, I will do it.  If you want me to do something 10 times, I will program the computer the first 
time and then IT can do the other 9.”

Tell the story of Dave with his request for a “Push me, Dave” button to do his job for him at the international shipping firm I worked at in the summer 
during my undergraduate years.

As the topic of this session is automation, some folks may be worried that automation is going to take their jobs.  I don’t believe this to be the case with 
networking.  It’s 2025, and if anything, network engineers are needed more now than ever.  Automation, if anything, will simply help free us up to be able 
to do what we should be doing.



https://frank.seesink.com

Key Takeaways

While working on my slide deck, it occurred to me that I was completely missing the absolutely key bits I really wanted to convey.  So before I delve deeper, 
let me cover these quickly.



https://frank.seesink.com

Culture Beats Tech

Key Takeaways

If you remember nothing else from this session, remember this.  Success or failure in developing a network automation strategy relies far more on the 
culture you cultivate than on any tool chain you decide to use.  Nothing kills faster than a bad culture.

This is akin to how in business in general you have expressions such as “People don’t quit jobs.  People quit managers.”

If you are in a managerial role and looking to bring in network automation, it matters greatly how you handle things.  Ideally you want to create win-win 
situations.  You want to create a “safe space” for your workers.  You want your staff engaged and involved, ideally taking ownership of any automation 
projects, where they feel invested and know that you have their back.  This means having them help with the entire process, including helping select the 
tools to be used.



https://frank.seesink.com

Play to Your 
Strengths

On this topic, whenever someone asks things like “What tool or programming language should I use?”, the answer, as it always is in tech, is “it depends.”

Are you a shop with a group of folks experienced in Perl?  Then maybe you should consider using that.

Don’t have a deep bench in any particular language or tool chain?  Great!  This opens the door for your team to explore more and learn together.  The key 
thing is do not forget to play to your strengths.  It can make all the difference.



https://frank.seesink.com

“Makers Hours”

Key Takeaways

This one applies to both those in managerial roles and those doing the automation work.

There is a great difference between operational work and doing things like programming or putting together automation projects.  The former involves a 
lot of mental context switching (e.g., add this VLAN, fix that ACL).  The latter involves what are called “makers hours.”

When you program, it takes time to get into the flow of things.  On average it can take 15-20 minutes to get in the right head space to do work.  Every 
time you are interrupted from that workflow, you lose another 15-20 minutes easy.  You should also be blocking out time in 4 or 8 hour increments to 
focus on this kind of deep work.

To those doing automation/development work, control your space to avoid any unnecessary interruptions.  Get out of chat/collab applications.  Disable 
notifications.  Turn off your cell and/or set your work phone to DND.

To those in managerial positions over such workers, your job is to FIERCELY protect them from being interrupted, both by others as well as yourself.  
Failure to do so will have serious consequences on their ability to meet goals and deadlines.  I cannot overstate this.



https://frank.seesink.com

It’s a journey, 
not a destination

Key Takeaways

If there is one word you are likely to hear a good bit when it comes to network automation, it is the word “journey.”  People will refer to their journey in 
network automation.  And while it becomes a bit tried to hear after awhile, it is nonetheless true.

For those just starting out, it can feel like an insurmountable subject.  Trust me, it is not.  Everyone who is involved in network automation, whether for 
one year or ten, will tell you that it is a process.  And no matter how much you know, there is always more to learn.  The trick is to find someone who is 
ahead of you on this journey, and to try as best you can to learn from their mistakes to shorten your own journey.

But do understand that some things will simply take time.  For example, if you have never programmed before, you cannot expect to level up at the same 
pace as someone who has for years.  But be patient.  It will come.



https://frank.seesink.com

You Cannot Automate 
What You Do Not 

Know

Automation does not save you from having to do your proper due diligence in first documenting your network, or doing things like fleshing out your 
“Source of Truth” (more on this later).

That is, before you can automate, you need to know your network.  If you think automation is going to magically organize your network for you, you are 
going to be disappointed.



https://frank.seesink.com

Just do SOMETHING

Key Takeaways

Finally, for those just starting out, when it comes to how to get started in network automation, this is the answer.

A few years ago while preparing to do a presentation at Internet2’s Technology Exchange, I asked various folks involved in network automation what their 
advice would be to someone that was new and looking to get started.  And the one overwhelming response was “Just do SOMETHING, ANYTHING.”  That is, 
do not try to figure out everything up front.  Do not try to boil the ocean.  Just start with something small.  It can be absolutely anything.  But START.

It’s like the old joke:  How do you eat an elephant?  One bite at a time.



https://frank.seesink.com

History of 
Networking 
(abridged)

Now in order to know where we are going, we need to know where we have been.

“Those who do not learn from history are bound to repeat it.”
“History does not repeat itself, but it does rhyme.”
RFC1925



https://frank.seesink.com

Story Time...

• In the beginning… 

• Command Line Interfaces (CLIs) 

• text configuration files (e.g., Cisco IOS), or… 

• binary config files (e.g., Bay Networks)

TL;DR

It is 2025 and this is still true today.  Not much has changed in 30+ years.



https://frank.seesink.com

Text Files…

• Advantages 

• Easy to edit and backup 

• Copy/paste to deploy new devices 

• Disadvantages 

• Easy to make mistakes / typos 

• Depending on NOS, commands go active 
immediately

Cisco IOS famously is such that the moment you hit enter while in configuration mode, the command you type goes active.  This compared to, for example, 
JunOS, which uses the commit/confirm approach where you can type a series of commands, but only once you commit those changes do they go live.  The 
impact this could have when performing certain actions like modifying ACLs could not be overstated.

To this day, some automation systems will perform full config file loads vs. modifying individual lines in a config for this reason.



https://frank.seesink.com

Network Management

• ICMP (ping, traceroute) 

• syslog 

• SNMP (“Simple” Network Management Protocol) 

• AAA (e.g., RADIUS, TACACS+)

Also during this time the general notion that we needed some way to perform network management was going on.  The most common (and still used) 
standards/protocols were ICMP (ping, traceroute), syslogs for textual logging information sent from network equipment, as well as SNMP traps, and SNMP.

Originally intended to be used to actually manage network equipment, even the networking world has said “Only use SNMP for monitoring” for at least 2 
decades now due to the potential security implications.  Yet even today, most network monitoring tools rely on these protocols and ICMP.

https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol


https://frank.seesink.com

Config Backups

• RANCID (Really Awesome New Cisco config Differ) 

• Oxidized (RANCID replacement written in Ruby) 

• Newer tools in this class include 

• Kiwi CatTools (now part of SolarWinds) 

• rConfig 

• Unimus

So what were the early attempts at automation?  The first was likely performing configuration backups.

https://shrubbery.net/rancid/
https://github.com/ytti/oxidized
https://www.solarwinds.com/kiwi-cattools
https://www.rconfig.com/
https://unimus.net/


https://frank.seesink.com

Scripting

• Shell scripts (e.g., SH, BASH) 

• Perl 

• Expect (extension of Tcl scripting language) 

• Python 

• Oh, and “screen scraping” 

“Artisinal coding” 

All of these relied on TELNET/SSH and the NOS CLI.

Beyond basic config backups, the next thing likely involved some form of basic scripting.

This in itself was a challenge due to all the variance in TELNET and SSH implementations.

https://en.wikipedia.org/wiki/Expect


https://frank.seesink.com

SDN/OpenFlow 
(circa 2010-)

• Software Defined Networking 

• Separation of data/forwarding plane and the 
control plane 

• Distributed data plane vs. centralized control 
plane 

• OpenFlow (Nick McKeown, Martin Casado)

While SDN had been researched earlier, it was OpenFlow which really brought this to the forefront.

Notable implementations include those done by Google.

https://en.wikipedia.org/wiki/OpenFlow


https://frank.seesink.com

SDN/OpenFlow 
(circa 2010-)

• Controllers 

• Faucet, ONOS, OpenDaylight, OpenSwitch, Ryu 

• Nicira (eventually bought by VMware (NSX)) 

• White box networking 

• Cumulus Networks (NVidia), IP Infusion OcNOS, 
PicOS, SONiC (Software for Open Networking in the 
Cloud) 

• ONIE (Open Network Install Environment)

This was also the time of “white box networking”.  Think how folks buy “industry standard” PCs with Intel or AMD chips in them, on which they run their OS 
of choice, now applied to networking gear.  The dream was that this would bring prices down and provide more freedom to move between vendors.  It did 
not exactly turn out that way.

But it still moved the industry forward.  For example, one good thing that came out of this was ONIE.  ONIE is to networking what the BIOS or UEFI chip is to 
PCs.  It provides a standard boot process for network equipment, allowing you to run different NOSes on the same hardware.

https://faucet.nz/
https://opennetworking.org/onos/
https://www.opendaylight.org/
https://www.openswitch.net/
https://ryu-sdn.org/
https://www.ipinfusion.com/
https://www.pica8.com/picos-software/
https://sonicfoundation.dev/


https://frank.seesink.com

DevOps

Time to define some terms…



https://frank.seesink.com

What is this DevOps of 
which you speak?

“DevOps (a clipped compound of 
"development" and "operations") is a 
software engineering practice that aims at 
unifying software development (Dev) and 
software operation (Ops).” 
Source:  https://en.wikipedia.org/wiki/DevOps

https://en.wikipedia.org/wiki/DevOps


https://frank.seesink.com



https://frank.seesink.com

NetDevOps



https://frank.seesink.com

NetDevOps

Combines DevOps principles with Network 
Operations (NetOps) to bring automation, 
programmability, and collaborative practices to 
network infrastructure management



https://frank.seesink.com

In Plain English?

The love child between systems/network 
administrators and programmers



https://frank.seesink.com

System Configuration 
Management Tools

To understand the next phase in network automation history, you need to understand a little bit about systems configuration management tools.



https://frank.seesink.com

Many tools existed for doing sysadmin work.  These included the following…



https://frank.seesink.com

Now while not relevant directly to network automation, if you look at the languages used to develop these various tools, you might notice a pattern around 
which ones ended up being used more in network automation.



https://frank.seesink.com

ANSIBLE



https://frank.seesink.com

Ansible

The name "Ansible" references a fictional 
instantaneous hyperspace communication system 
(as featured in Orson Scott Card's Ender's Game 
(1985),[9][10] and originally conceived by Ursula K. 
Le Guin for her novel Rocannon's World (1966)).[11] 

 
Source: https://en.wikipedia.org/wiki/Ansible_(software)

https://en.wikipedia.org/wiki/Ansible_(software)


https://frank.seesink.com

Ansible

• In 2016, Ansible, a tool originally intended for 
systems automation, began being used for  
network automation. 

• With the release of Ansible 2.2, things really took 
off.

https://github.com/ansible/ansible


https://frank.seesink.com

So Why Ansible?

The following was taken from a slide deck I worked on back in 2019.  So SIX years ago already this was the state of things.



https://frank.seesink.com

Agent-based vs. Agent-less*

• CFEngine 

• Chef 

• Munki 

• Puppet 

• SaltStack 
 
 

• Ansible



https://frank.seesink.com

Agent-based

Server

Client

Client

Client

Terms:
Server == Puppet Master, Salt Master, etc.
Client== Puppet Agent, Salt Minion, etc.
Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.



https://frank.seesink.com

Agent-less

Server

Client

Client

Client



https://frank.seesink.com

Advantages of 
Agent-based

Server

Client

Client

Client



https://frank.seesink.com

Advantages of 
Agent-based

Server

Client

Client

Client

Typically agents check in, thus coming out through any firewalls vs. the server trying to come in. Of course, in a tightly regulated environment with proxy 
servers, etc., this may require additional work, but often things “just work.”



https://frank.seesink.com

Advantages of 
Agent-based

Server

Client

Client

Client

Persistent bus connection

Salt Stack is different from other agent-based configuration management tools in that it creates a persistent connection back to the minions.  This allows 
for immediate execution of commands.
For example, you get a call that some of your users are experiencing issues getting to Google. With Salt, you could tell all of your minions to ping Google’s 
servers and to report back. This gives you insight from across your network (and also gives you a kind of botnet of your very own!).



https://frank.seesink.com

Advantages of 
Agent-less

Server

Client

Client

Client

SSH



https://frank.seesink.com

Agent-less

Server

Client

Client

Client

*

* for clients which support Python, 
agent script sent through SSH 

tunnel to run on far end



https://frank.seesink.com

Ansible 2.x 
(currently v2.19.2)

Server

SSH 
• raw module 
• network modules 

e.g., Ios, Junos, etc.



https://frank.seesink.com

Network Modules 
(Fall 2017)

• A10 

• ACI (Cisco) 

• Aireos (Cisco) 

• Aos 

• Aruba 

• Asa (Cisco) 

• Avi 

• Bigswitch 

• Citrix 

• Cloudengine 

• Cloudvision (Arista) 

• Cumulus 

• Dellos10 

• Dellos6 

• Dellos9 

• Eos (Arista) 

• F5 

• Fortios 

• Illumos 

• Interface 

• Ios (Cisco) 

• Iosxr (Cisco) 

• Junos 

• Layer2 

• Layer3 

• Lenovo 

• Netconf 

• Netscaler 

• Netvisor 

• Nuage 

• Nxos (Cisco) 

• Ordnance 

• Ovs 

• Panos 

• Protocol 

• Radware 

• Routing 

• Sros 

• System 

• Vyos

Source:  http://docs.ansible.com/ansible/latest/list_of_network_modules.html

40    

http://docs.ansible.com/ansible/latest/list_of_network_modules.html


https://frank.seesink.com

Network Modules 
(Fall 2019)

• A10 

• Aci 

• Aireos 

• Aruba 

• Asa 

• Avi 

• Bigswitch 

• Check_Point 

• Cli 

• Cloudengine 

• Cloudvision 

• Cnos 

• Cumulus 

• Dellos10 

• Dellos6 

• Dellos9 

• Edgeos 

• Edgeswitch 

• Enos 

• Eos 

• Eric_Eccli 

• Exos 

• F5 

• Files 

• Fortianalyzer 

• Fortimanager 

• Fortios 

• Frr 

• Ftd 

• Icx 

• Illumos 

• Ingate 

• Interface 

• Ios 

• Iosxr 

• Ironware 

• Itential 

• Junos 

• Layer2 

• Layer3

Source:  https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html


https://frank.seesink.com

Network Modules 
(Fall 2019 cont.)

• Meraki 

• Netact 

• Netconf 

• Netscaler 

• Netvisor 

• Nos 

• Nso 

• Nuage 

• Nxos 

• Onyx 

• Opx 

• Ordnance 

• Ovs 

• Panos 

• Protocol 

• Radware 

• Restconf 

• Routeros 

• Routing 

• Skydive 

• Slxos 

• Sros 

• System 

• Voss 

• Vyos 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source:  https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html

65    

http://docs.ansible.com/ansible/latest/list_of_network_modules.html


https://frank.seesink.com

Network Modules 
IOS (Fall 2017)

Cisco IOS 

• Ios 

• ios_banner - Manage multiline 
banners on Cisco IOS devices 

• ios_command - Run commands on 
remote devices running Cisco IOS 

• ios_config - Manage Cisco IOS 
configuration sections 

• ios_facts - Collect facts from remote 
devices running Cisco IOS 

• ios_interface - Manage Interface on 
Cisco IOS network devices 

• ios_logging - Manage logging on 
network devices 

• ios_ping - Tests reachability using 
ping from IOS switch 

• ios_static_route - Manage static IP 
routes on Cisco IOS network devices 

• ios_system - Manage the system 
attributes on Cisco IOS devices 

• ios_user - Manage the aggregate of 
local users on Cisco IOS device 

• ios_vrf - Manage the collection of 
VRF definitions on Cisco IOS devices

Source:  http://docs.ansible.com/ansible/latest/list_of_network_modules.html

11    

http://docs.ansible.com/ansible/latest/list_of_network_modules.html


https://frank.seesink.com

Network Modules 
IOS (Fall 2019)

• ios_banner – Manage multiline banners on 
Cisco IOS devices 

• ios_bgp – Configure global BGP protocol 
settings on Cisco IOS 

• ios_command – Run commands on remote 
devices running Cisco IOS 

• ios_config – Manage Cisco IOS configuration 
sections 

• ios_facts – Collect facts from remote devices 
running Cisco IOS 

• ios_interface – Manage Interface on Cisco 
IOS network devices (D) 

• ios_interfaces – Manages interface attributes 
of Cisco IOS network devices 

• ios_l2_interface – Manage Layer-2 interface 
on Cisco IOS devices (D) 

• ios_l2_interfaces – Manage Layer-2 interface 
on Cisco IOS devices 

• ios_l3_interface – Manage Layer-3 interfaces 
on Cisco IOS network devices (D) 

• ios_l3_interfaces – Manage Layer-3 interface 
on Cisco IOS devices 

• ios_lacp – Manage Global Link Aggregation 
Control Protocol (LACP) on Cisco IOS devices 

• ios_lacp_interfaces – Manage Link 
Aggregation Control Protocol (LACP) on Cisco 
IOS devices interface 

• ios_lag_interfaces – Manage Link 
Aggregation on Cisco IOS devices

Source:  https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html


https://frank.seesink.com

Network Modules 
IOS (Fall 2019 cont.)

• ios_linkagg – Manage link aggregation 
groups on Cisco IOS network devices 

• ios_lldp – Manage LLDP configuration on 
Cisco IOS network devices 

• ios_lldp_global – Configure and manage 
Link Layer Discovery Protocol(LLDP) 
attributes on IOS platforms 

• ios_lldp_interfaces – Manage link layer 
discovery protocol (LLDP) attributes of 
interfaces on Cisco IOS devices 

• ios_logging – Manage logging on network 
devices 

• ios_ntp – Manages core NTP configuration 

• ios_ping – Tests reachability using ping 
from Cisco IOS network devices 

• ios_static_route – Manage static IP routes 
on Cisco IOS network devices 

• ios_system – Manage the system attributes 
on Cisco IOS devices 

• ios_user – Manage the aggregate of local 
users on Cisco IOS device 

• ios_vlan – Manage VLANs on IOS network 
devices (D) 

• ios_vlans – Manage VLANs on Cisco IOS 
devices 

• ios_vrf – Manage the collection of VRF 
definitions on Cisco IOS devices

27    

Source:  https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html

Do note I took these slides from a 2019 presentation simply to show how quickly things were moving back then.  But this IS from 6 years ago at this point.  
Please note much has changed in the world of Ansible since then.  And since then, I have not done much with Ansible, having moved on to coding in 
Python using things like Netmiko and Nornir for network automation and Django (for the web framework).  I provide this information solely as examples, 
not as endorsements or claims of the current state of Ansible.

http://docs.ansible.com/ansible/latest/list_of_network_modules.html


https://frank.seesink.com

I am NOT idempotent! 
Wait… what?



https://frank.seesink.com

Idempotent

Source:  “The Google”

In simple terms, when you use a tool like Ansible and run a playbook, whether you run it one time or 10x, the end state will be the same.  That is what 
being idempotent means.



https://frank.seesink.com



https://frank.seesink.com



https://frank.seesink.com



https://frank.seesink.com

Red Hat Ansible

Ansible (source) Red Hat Ansible Engine

AWX Red Hat Ansible Tower

  

  

  

Fedora RHEL



https://frank.seesink.com

Semaphore UI

https://semaphoreui.com/

Today if I were to use Ansible and want to automate playbook execution, I would likely look into tools like Semaphore UI, which did not exist back in 2017.

https://semaphoreui.com/


https://frank.seesink.com

So THAT’s why 
Ansible



https://frank.seesink.com

YAML

Now you cannot talk about Ansible without also talking about YAML.



https://frank.seesink.com

What is YAML?

• Yet Another Markup Language 

• DSL (Domain-Specific Language) 

• Text-based, human-readable

For those not familiar, YAML is a text-based, “human-readable” language used by Ansible for its configuration files, inventory, and playbooks.

https://en.wikipedia.org/wiki/Domain-specific_language


https://frank.seesink.com

Playbook (raw)

--- 
- name: Show version of IOS running on routers 
  hosts: routers 
  gather_facts: false 

  tasks: 
    - name: Use raw mode to show version 
      raw: "show version" 

      register: print_output 

    - debug: var=print_output.stdout_lines 

These are extremely short (and outdated) examples of Ansible YAML playbooks.  They are just to show the formatting/layout.



https://frank.seesink.com

Playbook (ios_command)
--- 
- name: Backup running-config on routers 
  hosts: routers 
  gather_facts: false 
  connection: local 

  tasks: 
    - name: Backup the current config 
      ios_command: 
        authorize: yes 
        commands: show run 

      register: print_output 

    - name: save output to a file 
      copy: content="{{ print_output.stdout[0] }}" dest="./output/
{{ inventory_hostname }}.txt" 



https://frank.seesink.com

Limitations of YAML

• Very finicky about indentation, spacing, quotes 

• Once you try applying conditional logic, things get 
ugly fast

The challenge with YAML is that you can really get caught up in the formatting of it.  This also includes such things as how to properly escape strings 
within strings for proper dereferencing.

Also, it works well for basic definitions of a sequence of steps.  But once you have to do anything for which an Ansible module does not exist, or you want 
to apply more complex conditional logic, it quickly falls apart.  The key thing to understand is when to use Ansible… and when not to.



https://frank.seesink.com

Python

Once you reach the limits of Ansible itself, you often find the next step is a foray into the world of Python.  This often begins with trying to learn just 
enough Python to create whatever Ansible module you need that currently does not exist or does not work properly.

But again, there is trying to shoe-horn a solution together, and then there is simply realizing that it is time to bring actual coding to bear.



https://frank.seesink.com

Python

• Paramiko (SSHv2) 
• Netmiko 

• “Multi-vendor library to simplify Paramiko SSH 
connections to network devices” 

• Nornir 
• “Pluggable multi-threaded framework with inventory 

management to help operate collections of devices” 
• NAPALM (Network Automation and Programmability 

Abstraction Layer with Multivendor support) 
• mostly Arista, Cisco, Juniper

Python’s tagline is “batteries included.”  This implies that Python comes with all the key abilities you need built-in.  However, the real power of Python 
comes from the ecosystem of 3rd party libraries that exist.

For example, Paramiko let you SSH into single devices.

Netmiko leveraged Paramiko to SSH into single network devices, handling things like the CLI prompt.

Nornir added multi-threading to Netmiko and inventory similar to Ansible, letting you SSH simultaneously into multiple network devices.

NAPALM is another framework that simply caters more to just the 3 vendors mentioned. 

https://www.paramiko.org/
https://github.com/ktbyers/netmiko
https://github.com/nornir-automation/nornir
https://github.com/napalm-automation/napalm


https://frank.seesink.com

Python

• Kirk Byers (https://pynet.twb-tech.com/) 
• offers network automation courses on Ansible, 

Python, Nornir, and Git 

• There are far too many books, courses, YouTube videos, 
etc. out there on Python to recommend specific ones.

You can’t talk about Netmiko, Nornir, and NAPALM without inevitably talking about Kirk Byers.

As for which books, courses, etc., to take to learn Python, it truly is a case of “it depends”, as everyone learns best different ways.  What I would suggest is 
that you figure out how you best learn, then focus on that.  If your job gives you access to things like LinkedIn Learning, and that approach works for you, 
there are several good courses there.

https://pynet.twb-tech.com/


https://frank.seesink.com

Python

• Network Automation Cookbook: Over 100 recipes to 
effectively configure and manage network 
infrastructure with Ansible, 2nd Ed 

• Network Programmability and Automation: Skills for 
the Next-Generation Network Engineer, 2nd Ed by by 
Matt Oswalt, Christian Adell, Scott S. Lowe, Jason 
Edelman

Here are just two examples of 2nd editions of books which may or may not help.

https://www.amazon.com/Network-Automation-Cookbook-effectively-infrastructure/dp/B0FGPW3TDV
https://www.amazon.com/Network-Automation-Cookbook-effectively-infrastructure/dp/B0FGPW3TDV
https://www.amazon.com/Network-Automation-Cookbook-effectively-infrastructure/dp/B0FGPW3TDV
https://www.amazon.com/Network-Programmability-Automation-Next-Generation-Engineer/dp/1098110838
https://www.amazon.com/Network-Programmability-Automation-Next-Generation-Engineer/dp/1098110838


https://frank.seesink.com

Development Tools

Once we head down the programming path, inevitably tooling comes into play.

Now this topic is far too dense to cover in an overview, so this will be an extremely high-level smattering at best.



https://frank.seesink.com

Development Tools

• IDE (Integrated Development Environment) 

• e.g., Visual Studio Code (VSCode) / VSCodium 

• Git (official site) 

• a distributed version control software system 

• Hosting services, e.g., GitHub, GitLab, Gitea

IDEs offer editing systems, typically complete with extensions/plugins to help with the workflow of program development.  One of the most popular today 
is Microsoft’s VSCode (or the VSCodium fork for those who do not trust Microsoft), though many others exist.  For example, Sublime Text, JetBrains, 
Cursor, and more.

And yes, Cursor is an IDE that integrates AI, but we’ll get to that soon.

Once you truly start developing code, you will invariably need to learn about doing version control.  And today that really means learning Git.  Using Git 
solely on your own development system, with no need for any server, you can leverage its features to help you do versioning/etc.  And you can easily work 
with a team that all use Git solely on their development systems.

But the real power comes when you also keep your code in a repository in a central location, so that you don’t have to be online at the same time as your 
coworker in order to perform the typical actions involved such as pull requests and merges.

https://code.visualstudio.com/
https://vscodium.com/
https://en.wikipedia.org/wiki/Git
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://about.gitea.com/


https://frank.seesink.com

Python Tools

• PyPI website 

• pip (Package Installer for Python) 

• Virtual Environments (venvs) 

• Poetry 

• uv / ruff

Now as you go further into Python, you will quickly realize that the “batteries included” ethos is about using 3rd party Python libraries.  These are stored on 
a website called PyPi.org.

pip is standard with Python and lets you pull down Python modules (i.e., “LEGO pieces”) such as Netmiko to use in your Python code.  However, everything 
you do has to be done manually.  And pip is very slow.

venvs are the way in which you “sandbox”/isolate your Python projects from one another to avoid what I call “dependency hell” or collisions in module 
versions.  Python again has support built-in for this, though other modules exist like ‘pipenv’ and ‘virtualenv’ which each do things slightly differently.

Poetry is yet another package manager out there that tried to improve things.

But today the “new hotness” is Astral’s uv, which is an “extremely fast Python package and project manager, written in Rust,” which replaces the need for 
several other tools.  uv, in short, brings Python development about as close as you are going to get to a uniform workflow such as you might see in Go 
development.

https://pypi.org/
https://pypi.org/project/pip/
https://python-poetry.org/
https://github.com/astral-sh/uv
https://astral.sh/ruff


https://frank.seesink.com

Which brings me to a quick plug for Go.

To be clear, if you were only going to learn one programming language to do network automation, you should probably learn Python.

But if you are going to learn two languages, I strongly recommend that you consider Go.



https://frank.seesink.com

Why Go?

• Python’s creator, Guido van Rossum, worked at Google from 
2005-2012. 

• For years Google heavily used Python internally and even offered 
Python classes to its employees. 

• https://developers.google.com/edu/python 
• Google had also hired Rob Pike and Ken Thompson of Bell Labs 

(UNIX, C) fame. They, along with Robert Griesemer, created Go. 
• In 2013 Guido van Rossum went to work at Dropbox. (Dropbox was 

known to use Python.)  That seemed odd. 
• In 2014 Google publicly released Kubernetes, which is written in Go. 

The writing was on the wall?

Go, often called Golang (easier to find on the Web), is a statically compiled programming language that underpins much of the cloud.  Originally released 
back in 2009, Go was intended to replace Python in Google’s use cases.  But it would become the foundation of cloud computing, with tools such as 
Docker, Kubernetes, Terraform, Grafana, Helm, etcd, CoreDNS, Traefik, Cilium, and many more all being written in Go.  And that is not an accident.

And I genuinely believe that Go will eventually replace Python for many use cases in the coming decade or more.

But I only bring this up because when it comes to tooling, where in Python you need all these 3rd party tools like Poetry, uv, and ruff, with Go everything 
you need is in Go compiler.  This is because Go includes everything to write, compile, test, and lint your code.  The only 3d party bits, such as Go 
extensions in VSCode, are to hook into those very same tools within the Go toolchain.

https://developers.google.com/edu/python


https://frank.seesink.com

Go is as if C and Python got together and had a baby, giving you best of both worlds.

You get all the benefits of a statically compiled language that creates binaries without any external dependencies combined with the rapid development 
cycle of a dynamic scripting languages with Pythonic characteristics.



https://frank.seesink.com

Source of Truth (SoT)

With Ansible, you have what is called an “inventory”, which is a simple directory structure of YAML text files which define all the devices you wish to 
interact with using Ansible playbooks.  This might be considered the “source of truth”.  But let’s discuss this further.



https://frank.seesink.com

What is a Source of 
Truth?

• Source of Truth (SoT) 

• Single Source of Truth (SSoT) 

• Source of Intent

When discussing network automation, the topic of a “Source of Truth” often comes up.  Simply put, the SoT is what you see as the place that tells you what 
your network SHOULD be, not necessarily how it IS.  Some refer to this as the Source of Intent.

The name has caused confusion as some folks would argue that the only real source of truth is the network itself, as only the network gear has both its 
configuration and current state (e.g., current ARP or routing tables, etc.).  But the idea is that the SoT is that it is the DECLARATIVE place where you define 
how your network SHOULD be, and what any network automation tool will turn to in order to do its work.

https://en.wikipedia.org/wiki/Single_source_of_truth


https://frank.seesink.com

Sources of Truth

• NetBox from NetBox Labs 

• originally created at Digital Ocean by Jeremy Stretch 

• Nautobot from Network to Code (NtC) 

• a fork of NetBox (long story) 

• Infrahub from OpsMill 

* All are open-source and offer paid support options

Some example of SoTs.  NetBox is the “OG” of such tools.  Nautobot came about after Jeremy Stretch left Digital Ocean, eventually went to work for NtC, 
they had a difference of opinion regarding NetBox’s future, so they parted ways and NtC forked NetBox into Nautobot.  But both are Python/Django-based 
projects.

InfraHub is a newer player on the scene which leverages Neo4j and “is a graph-based data management platform with built-in version control, CI 
workflows, peer review, and API access. It’s purpose-built to power reliable infrastructure automation at scale.”  Think “Git meets NetBox”.

https://github.com/netbox-community/netbox
https://netboxlabs.com/
https://github.com/nautobot/nautobot
https://networktocode.com/nautobot/
https://github.com/opsmill/infrahub
https://opsmill.com/


https://frank.seesink.com

Tools and platforms 
currently being 
recommended

This brings us to one of the key topics requested.



https://frank.seesink.com

Tools/Platforms

• Options range… 

• from FLOSS (Free/Libre Open Source Software) 

• to fully commercial, vendor-specific options

For those looking for a more “canned” solution, this ranges from FLOSS where “if you break it, you get to keep both pieces” all the way to fully commercial, 
vendor-specific solutions.



https://frank.seesink.com

Tools/Platforms 
(FLOSS)

• eNMS (GitHub repo) 

• Workflow Orchestrator (GitHub repo) 

• developed by SURF together with ESnet

In no particular order, you have tools such as eNMS and SURF/ESnet’s Workflow Orchestrator, both written in Python.

https://www.enms.io/
https://github.com/eNMS-automation/eNMS
https://workfloworchestrator.org/orchestrator-core/
https://github.com/workfloworchestrator/orchestrator-core
https://www.surf.nl/
https://www.es.net/


https://frank.seesink.com

Tools/Platforms 
(No-/Low-Code)

• No- to low-code commercial options that provide 
multi-vendor support: 

• Gluware 

• Itential

On the no- to low-code commercial side of things, you have vendors such as Gluware and Itential offering solutions.

https://gluware.com/
https://www.itential.com/


https://frank.seesink.com

Tools/Platforms 
(Arista)

• Arista AVD (Architect Validate Deploy) “is an 
extensible data model that defines Arista’s Unified 
Cloud Network architecture as “code”.” 

• There is an AVD Ansible Collection and PyAVD, 
both of which leverage EOS API (eAPI) and 
CloudVision Portal (CVP).  CloudVision “is Arista’s 
modern, multi-domain management platform that 
leverages cloud networking principles to deliver a 
simplified NetOps experience.”

Starting down the vendor-specific path, in purely alphabetical order we begin with Arista and AVD.

https://avd.arista.com/
https://avd.arista.com/4.5/docs/pyavd.html
https://www.arista.com/en/products/eos/eos-cloudvision


https://frank.seesink.com

Tools/Platforms 
(Cisco)

• Cisco DNA Center (DNAC), now called Cisco 
Catalyst Center, and 

• NSO (Network Services Orchestrator) 

• Formerly Tail-F, NSO is multi-vendor in nature.

Next we have Cisco with what is now called Catalyst Center.

And then there is NSO.  Formerly Tail-F, an independent company that built a truly multi-vendor solution, Cisco bought them and rebranded the software.  
It is still Tail-F underneath, however, and supposedly they have kept their multi-vendor support.

But as one example of an NSO customer, you have Internet2.

https://www.cisco.com/site/us/en/products/networking/catalyst-center/index.html
https://www.cisco.com/site/us/en/products/networking/catalyst-center/index.html
https://www.cisco.com/site/us/en/products/networking/software/crosswork-network-services-orchestrator/index.html


https://frank.seesink.com

Tools/Platforms 
(Extreme Networks)

• ExtremeCloud IQ Site Engine (XIQ-SE) - on-prem 

• ExtremeCloud IQ - cloud-based

For those using Extreme Networks, for on-prem solutions you have what originally was Enterasys’ Netsight tool, which later was rebranded to Extreme 
Management Console (XMC) after Extreme bought Enterasys, and later again was rebranded as ExtremeCloud IQ Site Engine (XIQ-SE) after Extreme bought 
Aerohive Networks and had rebranded their cloud-based management platform, HiveManager NG, as eXtreme Cloud IQ (XIQ for short).

And this brings us to their cloud-based offering, eXtreme Cloud IQ (XIQ).  XIQ-SE handles on-prem access while XIQ provides cloud-based management.

https://www.extremenetworks.com/products/network-management/extremecloud-iq-site-engine/extremecloud-iq---site-engine
https://www.extremenetworks.com/products/cloud-based-management/extremecloud-iq/extremecloud-iq


https://frank.seesink.com

Tools/Platforms 
(Others)

• Aruba (Central) 

• Juniper (Mist) 

• Nokia (e.g., Event-Driven Automation (EDA))

Beyond that, you have various other tools out there, such as those in the wireless space such as Aruba Central and Juniper’s Mist (now under HPE).

And then there is Nokia with their EDA.

https://www.nokia.com/automation/


https://frank.seesink.com

“Proof is left as an 
exercise for the 

reader”

This was a favorite expression of one of my professors.  We often thought it was just his way of getting out of having to explain something to us.

I am using this as a placeholder as there are just too many topics/areas to cover around network automation, so I am just listing them here without further 
explanation for now.



https://frank.seesink.com

Other Topics Not Covered

• JSON - JavaScript Object Notation 

• NETCONF (Network Configuration Protocol) 
defined by IETF.  RPC using XML. 

• OpenConfig - data models written in YANG (Yet 
Another Next Generation) 

• RESTCONF defined by IETF. Uses HTTP and YANG.

But you may well encounter them as you delve deeper into network automation.

https://www.json.org
https://en.wikipedia.org/wiki/NETCONF
https://en.wikipedia.org/wiki/XML
https://www.openconfig.net/
https://datatracker.ietf.org/doc/rfc6020/
https://datatracker.ietf.org/doc/html/rfc8040


https://frank.seesink.com

“AI”

You can’t swing a dead cat without hitting something “AI” related these days.  So let’s talk about that a bit.



https://frank.seesink.com

genAI

• OpenAI’s ChatGPT 

• Anthropic’s Claude 

• Google Gemini 

• Meta Llama 

• xAI’s Grok 

• Apple Intelligence 

• Alibaba Cloud 

• DeepSeek AI 

• Mistral AI 

• …

Unless you have been living under a rock the past few years, “generative AI” has been all the rage.  (Even though it is truly neither of those things—neither 
“generative” nor “AI”, but rather more accurately “derivative ML”—I will do my best to refrain from getting on my soapbox about all this for now.)

Beginning with OpenAI’s ChatGPT leading the charge, now we have all the major “Big Tech” companies, along with several others, all scrambling to try and 
achieve AGI (Artificial General Intelligence).

https://openai.com/
https://chatgpt.com/
https://www.anthropic.com/
https://claude.ai
https://gemini.google.com
https://www.llama.com/
https://grok.com/
https://www.apple.com/apple-intelligence/


https://frank.seesink.com

LLMs

• Large Language Models 

• Terms:  Parameters, weights, tokens, prompts, 
context window size 

• Think artificial brain trained on massive amounts 
of text, where in the end you have something 
which you can ask questions of or give commands 
to

Now the actual tech employed are LLMs (Large Language Models).  These are computer programs intended to mimic the human brain of neurons and 
synapses using parameters and weights, where they feed these LLMs massive quantities of text which are tokenized to “train” the model.

The end result is this “brain” which, given a sequence of words (i.e., tokens), determines what the most probable set of words should be in the response.  
In short, LLMs are like word probability engines.

So when you hear “parameter”, think neuron.
When you hear “weights”, think the thickness of a synapse between two neurons.
When you hear “token”, think word.
When you hear “prompt”, think “ask a question/give a command.”
When you hear “context window size”, think “how much can the LLM ‘remember’ as you interact with it.” This is typically listed by the number of tokens the 
LLM can keep in memory before it begins “forgetting.”

This will help make sense of the language being used in the AI space.



https://frank.seesink.com

Cloud AIs

• With each new version, they get… better(?) 

• e.g., ChatGPT-3.5, ChatGPT-4, ChatGPT-4o, and 
now ChatGPT-5 

• Resource consumption 

• Privacy issues

As these cloud AI companies all race to achieve AGI, they are iterating their respective LLMs, tuning how they train their models, along with how many 
parameters their model holds, etc.

And with each iteration, as the models grow larger while they try to optimize the compute power needed to train the model, the overall needed compute 
capacity drives up the need for more datacenters, and therefore the amount of electricity, fresh water, etc., that these models consume.

There are also all the privacy issues around using such AIs, as any information you provide an AI while interacting with it (such as asking it to summarize 
an email you received) means in essence that you have uploaded a copy of that information to the cloud provider, who now holds a copy of that 
information, with the possibility of training their LLMs in a future iteration on that data.  The security implications of this are immense.



https://frank.seesink.com

Cloud vs. Offline LLMs

• “Open Source” versions of cloud LLMs

Which brings us to the topic of offline LLMs.  Beyond the usual cloud-based “AI”s such as ChatGPT, almost every AI company offers a stripped down version 
of their LLMs which you can download and run offline if you have sufficient resources.  In the PC world, this means having a decent GPU such as an Nvidia-
based graphics card.  If you have an Apple Silicon Mac, you can leverage the GPU cores in those ARM64-based chips.

Each of these offline LLMs typically comes with an “open source” license.  And I put that in quotation marks because the only thing that is open source is 
the license itself.  The actual LLM you download is not.  You do not have access to the training data used to train the model, so you cannot see how it 
“learned.”



https://frank.seesink.com

Cloud vs. Offline LLMs

Cloud LLM Offline LLM

Parameters TRILLIONS Billions

Weights 32-bit 2-, 4-, 8-bit

Compute Resources 
Required

Datacenters PC

Cost Subscription FREE

So why wouldn’t everyone simply run LLMs offline?

Well to understand the difference between cloud-based and offline LLMs, here is some context.  As you can see, offline LLMs are basically “lobotomized” 
versions of their cloud-based cousins.  Where a cloud-based AI has TRILLIONs of neurons where the thickness of their synapses are stored as 32-bit 
values, in order to bring that “brain” down to a size that you can run on a PC, it has to be paired down to just so many BILLIONs of neurons where those 
same synapse thicknesses are stored as 8-bit, 4-bit, or even just 2-bit values.  Not quite the same level of detail.

And yet, even so, often such offline tools can be useful IF the right LLM is chosen for the task at hand.



https://frank.seesink.com

Example of Offline LLMs

• OpenAI’s gpt-oss 20B 

• Qwen3 Coder 30B 

• Deepseek R1 

• Gemma 3 27B 

• Hugging Face - think of it like “PyPI for AI”

Here are some examples of offline LLMs that you can download and use locally.  Mind you, there are thousands at this point, as folks pull down the ones 
offered by the major players, then tweak them in various ways to provide them with additional training/bits.

One very popular site for hosting such LLMs is Hugging Face.  Do not ask me about the name.  But know that this is a site where you can find just about 
any such LLM.

https://huggingface.co/


https://frank.seesink.com

Offline LLM Tools

UI/UX FLOSS Comments

Ollama CLI ✅ • “OG” offline tool

LM Studio GUI • MLX/GGUF support 
• detects hardware

Jan GUI ✅

AnythingLLM GUI ✅ Offline RAG client

• All are FREE and run on Linux, macOS, and Windows

Here are some example offline LLM tools.

Ollama is the “OG” of this space.  An open-source CLI-tool that lets you download LLMs much like doing Python “pip install” commands, Ollama is the 
basis for many other tools out there.

LM Studio is a proprietary program offering probably the nicest and simplest user interface, allowing you to easily download LLMs from Hugging Face by 
simply searching within the app and clicking.  If you have any interest in trying to run LLMs offline, this would be my first choice for trying things out.

Jan is a truly open-source program similar to LM Studio in that it provides a GUI for running LLMs.

And AnythingLLM has some unique features, notably that you can use it to build vector databases of your own documents, what are referred to as RAGs 
(Retrieval-Augmented Generation), where, for example, you might create such a RAG of all your Python eBooks, then run LM Studio, where you have it tie 
into AnythingLLM, and when you prompt the AI in AnythingLLM, it can provide more accurate responses as it leverages all those eBooks in the RAG.

While LM Studio is capable of letting you load up to 4 documents into it for doing RAG, AnythingLLM has no such limit.  And while the process of creating 
such a vector database can take a few minutes, once done it is immediately available any time you run your offline LLM.

https://ollama.com/
https://lmstudio.ai/
https://www.jan.ai/
https://anythingllm.com/


https://frank.seesink.com

IDEs with AI

• GitHub CoPilot (with VSCode) 

• Cursor 

• Many other VSCode-based startups

Now when it comes to using AI in development, there are various options.  These range from things like GitHub CoPilot and Cursor to a myriad of small 
startups which almost all are forking the VSCode IDE and bolting on some form of AI.

https://github.com/features/copilot
https://cursor.com/


https://frank.seesink.com

LLMs in Network 
Automation

• Mist Systems (bought by Juniper, who HPE 
bought) 

• John Capobianco

However, this session is not about AI, but rather about how AI is being used in network automation.

Now one of the first products which touted using AI years before most others was Mist Systems with their WiFi offerings.  Mist did such a good job with 
their product that Juniper bought them.  And as they continued to grow, they became an existential threat to more traditional players.  Some would say so 
much so that HPE ended up buying Juniper.

But beyond that, probably the name you will end up hearing the most at the moment is John Capobianco.  He has been making YouTube videos for awhile 
now showing how he has been integrating AI into various aspects of networking.  John is a good guy, though I will say that he does appear to have drunk a 
bit much of the AI KoolAid.  But his videos are very informative should you wish to learn more about what is possible.  (I will leave it to you to decide 
whether some of this falls in the camp of “Just because you can does not mean that you should.”)

https://www.youtube.com/@johncapobianco2527


https://frank.seesink.com

Key Workflows That 
Can Be Automated



https://frank.seesink.com

Key Workflows to 
Automate

Read-only operations; e.g., 
• perform config backups 
• pull state or config data; e.g., 

• current date/time on all routers/switches 
• NTP server IPs 
• SNMPv2/v3 config 
• ARP tables from switches 
• VLAN configs from interfaces, etc.

So quick comment.  Regarding computer use in general, I have always said,

“If you are organized in real life, the computer can help you streamline your workflows and save you a lot of time.  However, if you are disorganized in real 
life, the computer will only help speed you into oblivion.”

So regarding automation, it is important to understand the potential “blast radius” of any actions you take.  This is why I always tell folks, “Start with read-
only operations” and “Gun for the low hanging fruit first.”  That is, find something repetitive that gives you no joy, ideally something simple to start with, 
and see if you can automate that away.  Yes it will take time to build the automation initially.  But pay attention to how much time it will save in the long 
run.



https://frank.seesink.com

Key Workflows to 
Automate

Then what you can do with that read-only 
information; e.g., 
• verify all network gear has correct date/time 
• verify all network gear has correct NTP/SNMP 

configs 
• create search tool that, given a MAC or IP, 

provides the device/interface where it was last 
seen 

• create a tool to find unused VLANs across your 
network

The key thing here is to look for examples where you can save time.

Take the example of a boss who, when asked how to do something, can either

1. Do it in 10 minutes, or
2. Spend an hour teaching an underling how to do it.  

Most tech people choose the former.  But this is short-sighted.  First, you never have knowledge transfer to the younger generation.  But worse, you are 
shooting yourself in the foot.  If the task is something that needs to be performed just once a week, that means you just short-changed yourself out of > 7 
hours in the first year alone.



https://frank.seesink.com

Key Workflows to 
Automate

Read-write operations such as 
• modify NTP/SNMP/etc. settings 
• modify interface VLANs, including adding a VLAN 

(the infamous `switchport vlan add...`) to prevent 
overwrites

Once you get through read-only operations, the next step is to begin working on read-write operations, those things which actually CAN affect your 
network.  And here you want to start small, testing against one device, then a few, until you develop enough confidence in your code to unleash it on your 
entire network.

Here is where you might write code to handle catching typos such as “switchport vlan <#>” instead of “switchport vlan add <#>”, thereby avoiding a 
common issue.



https://frank.seesink.com

Efficiency Gains and 
Overall Impact



https://frank.seesink.com

Efficiency Gains/Impact

• In 2017 wrote Ansible playbook to upgrade 55 
Cisco 3945s + their switch modules (i.e., 110 
network device upgrades), located across the 
entire state, in < 1 hour 

• Manually this would have required weeks, if not 
months, to coordinate/plan each one

This was my first foray into network automation with Ansible.  In the state I worked in, there were 55 counties, each with a county tax office and 
courthouse with Internet access that we provided.  The playbook I wrote connected to all 55 county routers and the switch modules in them, where it

• checked which version of code each was running
• checked if the updated IOS image was in flash and, if not,

• uploaded it to flash
• verified the upload
• adjusted the configuration to load the new version
• reloaded the router/switch
• waited for the device to come back online
• logged back in to confirm that the device was on the new version

• and reported back the results

In short, the playbook, which I originally wrote against a single router, did every step that I would have had to do by hand, only against all 55 at the same 
time.

This took a manual process which would have required weeks if not months of planning to coordinate downtime for each of the 55 counties to less than 40 
minutes after hours one evening for all 55 counties at once.



https://frank.seesink.com

Efficiency Gains/Impacts

• In 2019 wrote a VPN Tool in Python/Django to 
automate work that previously, for each request, 
required interrupting me specifically to do ~15 
minutes of manual work across multiple systems 
to collect the relevant information. 

• Now each such request is reduced to ~10 seconds 
(mostly due to navigation to the webpage) AND, 
most importantly, does not require me and can be 
performed by anyone.

When we first started our DevOps group where I work now, we settled on using Python as our language and Django as our web framework for any web-
based tooling.  The first project we took on was rewriting a Perl tool that had been called “RouterProxy” (taken from the online sites you can TELNET/SSH to 
in order to do testing) and whose developer no longer worked there.  That tool has since been expanded well beyond its initial intent, and my VPN tool was 
simply another “LEGO piece” in that tool chain.



https://frank.seesink.com



https://frank.seesink.com

Challenges Faced and 
Lessons Learned



https://frank.seesink.com

Challenges/Lessons

• Operational work vs. “Makers hours” 

• Subverting DevOps workflows/processes 

• Do we hire network engineers that we teach 
programming or hire programmers that we teach 
networking?

Automation/programming is very different from day-to-day operational work.  The former requires "makers hours" while the latter requires shifting 
context regularly.  Each disruption to someone programming/etc. can easily cost 15-30 minutes or more of productivity, as it takes time to get back into 
“the zone”.

If you are in a managerial role, FIERCELY protect your automation/programming/DevOps people from such disruptions or you will find things take much 
longer and it will impact morale.

Far worse on morale, however, is subverting workflows/processes that your DevOps group has put in place.  If your group standardizes on some given 
language, frameworks, tools, etc., do not undermine that effort.

If you give your folks the time/freedom to work on something that interests them, you will often be pleasantly surprised by the outcome.



https://frank.seesink.com

Future Plans / 
Opportunities to 

Explore

Honestly, the sky is the limit here.



https://frank.seesink.com

Future Plans /
Opportunities to Explore

• Developing network-wide automations 

• Developing network automation that spans across 
AS boundaries 

• Integrating network and system automations

Again, network automation is a journey, going from very simple tasks up to developing network-wide automations.

Beyond that, there has been some discussion around the possibility of extending automations across AS boundaries.  That is, whether there are 
opportunities for different RENs and members, or even NRENs, to find ways of bringing collaborative automation to bear that goes beyond just one 
organization.

There are also opportunities in integrating systems with networking.  For example, currently in many datacenters they are using BGP as the iBGP.  But what 
if there were more ways for applications to adjust/tune the network for optimal performance?



https://frank.seesink.com

Resources

• Internet2 Network Automation SIG 

• I2 Slack workspace #i2-ntac-networkautomation 
channel (free to join for any I2 member) 

• Mailing list (not terribly active) 

• Zoom meetings where we discuss issues 

• every 1st Thu. of the month @ 3:PM Eastern 

• every 3rd Tue. of the month @ 11:AM Eastern

Now as for resources available, there are many.

For anyone who is an Internet2 Connector or Member, we have the I2 Network Automation SIG.  This includes having our own channel, #i2-ntac-
networkautomation, where we chat about all things network automation.  We also have two (2) online Zoom meetings each month, where we discuss 
whatever the members are interested in.  It is a very relaxed environment, and you are welcome to join and simply lurk around if you like.  We use an 
EtherPad to let folks add agenda items, and I think you’ll find the environment very supportive.

For anyone who wishes to be added to the Slack, please let me know and I will talk to Internet2.  Or if you know her, reach out to Linda Roos and feel free 
to tell her that I sent you to her.

And if anyone is interested in joining the Zoom calls, also let me know and we’ll get you the details.



https://frank.seesink.com

Resources



https://frank.seesink.com

Resources

• 2025 Internet2 Technology Exchange, 8-12 Dec., Denver, CO 
• Tutorials 

• Implementing CI/CD Pipeline in a NetDevOps 
Environment 

• Get Good with GitOps 
• Network Troubleshooting with Generative AI 
• Gemini Code Assist Essentials 

• Various sessions in the Advanced Networking track 
• NetGurus 

• Higher Education NetComm Workshop, 27 Oct., (Monday 
before EDUCAUSE in Nashville, TN), hybrid (in-person/
virtual) FREE

Then there are the Internet2 conferences:  the Community Exchange in the spring and the Technology Exchange in the fall.  Of the two the Technology 
Exchange has more “meat” regarding network automation or technical matters.  And the next TechEX is in early December in Denver, CO.  I currently plan 
on being there.

At TechEX you will find various tutorials, including the ones listed, and there are several sessions in the Advanced Networking track during the week.  I 
should know as I was invited to co-chair the Advanced Networking track this year.  There is also the NetGurus meeting, held that Friday, which is mostly 
for the member institutions.

Then there is the shameless plug for the Higher Education NetComm Workshop going on the day before EDUCAUSE kicks off.  Whether you are planning to 
attend EDUCAUSE in person or simply want to attend virtually, consider signing up.  Registration is free.  I know of at least one session that will be network 
automation related going on that day.

https://events.internet2.edu/website/84273/
https://events.internet2.edu/website/84273/tutorials/#anchor15
https://events.internet2.edu/website/84273/tutorials/#anchor15
https://events.internet2.edu/website/84273/tutorials/#anchor8
https://events.internet2.edu/website/84273/tutorials/#anchor17
https://events.internet2.edu/website/84273/tutorials/#anchor14
https://forms.office.com/r/Z8XDM5bCFy


https://frank.seesink.com

Resources

• Network Automation Forum (NAF) (website, blog) 
• NAF Slack workspace (to join) 
• AutoCon 4, 17-21 Nov., Austin, TX 
• AutoCon 5, Spring 2026, Europe 

• Packet Pushers (website, blog) 
• PP Slack workspace (to join) 
• Podcasts, including “Network Automation 

Nerds” with Eric Chou 
• NtC’s “Awesome Network Automation” GitHub 

repo

ALL F
REE!*

* Ok not AutoCon

There is now also the Network Automation Forum (NAF), which if you only join one group online, it likely should be this one, as it is SPECIFICALLY about 
network automation.  They offer a very active Slack workspace, and they organize two (2) conferences each year.  Their conference, called AutoCon, is held 
in a tick-tock fashion, with one in the fall typically held in the U.S. and the other in the spring held somewhere in Europe.

AutoCon 0 was in Denver in Fall 2023.
AutoCon 1 was in Amsterdam in Spring 2024.
AutoCon 2 was again in Denver in Fall 2024.
And AutoCon 3 was in Prague in Spring 2025.

AutoCon 4 will be in Austin, TX, this November.  Tickets do sell out, so be aware.

Beyond NAF, you also have the Packet Pushers.  They offer their website/blog, a ton of podcasts including one specifically about automation.  And they 
have a very active Slack workspace.

Finally, there is the Network to Code’s GitHub repo “Awesome Network Automation”, which contains a pile of links to various tools and information, far too 
much for me to list here.

https://networkautomation.forum/
https://join.slack.com/t/networkautomationfrm/shared_invite/zt-37d4kjngz-SOBbukxNrUTYZ7MgEAVH_Q
https://networkautomation.forum/autocon4
https://packetpushers.net/
https://packetpushers.net/community/
https://join.slack.com/t/packetpushers/shared_invite/zt-3bzyo1yh1-aPxVkgLaNT1Y~xwJ0QKW_Q
https://packetpushers.net/podcasts/
https://github.com/networktocode/awesome-network-automation


https://frank.seesink.com

Thank You

Frank Seesink 
frank@seesink.com

“Hallway track/chat” 
https://tlk.io/nysernetconnect2025

https://frank.seesink.com/presentations/NYSERNet-Connect-Fall2025/

Again, for anyone who would like a copy of this slide deck, visit the QRCode or URL at the top left.

And although this conference is virtual, I thought I would try to “be around” in the virtual hallway as it were for the remainder of the day.  For anyone who 
would like to keep the conversation going today, or who has any questions, etc., I have created this simple web chat on tlk.io as an experiment.  Just visit 
the QRCode or URL at the bottom right

Simply visit the URL, type in a name (or make one up if you prefer), and start typing.  (You can also log in with Twitter or Facebook, but I intentionally 
searched for something that did not require doing so, let alone creating an account, etc.  The idea here is that it is just a simple, “friction free” way to chat 
for the day.

mailto:frank@seesink.com
https://tlk.io/nysernetconnect2025
https://frank.seesink.com/presentations/NYSERNet-Connect-Fall2025/

